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Abstract 

Product Disrributwn(PD) theory is a new framework 
for doing distributed adaptive control of a multiagenr sys- 
tem(MAS). We introduce the technique of “coordinare trans- 
formations ’’ in PD theory gradient &scent. i%ese transfor- 
mations selectively couple a few agents with each othpr in!tn 
”rneta-agents ”- Intuitively, this can be viewed iu a general- 
ization of forming binding contracts between those agents. 
Doing this sacrifces a bit of the distributed nature of the 
MAS, in that there must now be communication from multi- 
ple agents in determining what joint-move is fnally imple- 
mented Howevel; as we demonstrate in computer experi- 
ments, these tran$orrnations improve the the perfarmance 
of the MAS. 

1. Introduction 

Product Distribution (PD) theory is a recently intro- 
duced broad framework for analyzing, controlling, and 
optimizing distributed systems [8, 9, lo]. Among its po- 
tential applications are adaptive, distributed control of 
a Multi-Agent System WAS), (constrained) optimiza- 
tion, sampling of high-dimensional probability densities 
@e., improvements to Metropolis sampling), density es- 
timation, numerical integration, reinforcement learning, 
information-theoretic bounded rational game theory, popu- 
lation biology, and management theory. Some of these are 
investigated in [ 1,2, 71. 

Here we investigate PD theory’s use for adaptive, dis- 
tributed control of a MAS. Typically such control is done 
by having each agent run its own reinforcement learning al- 
gorithm [3, 11, 12, 131. In this approach the utility func- 
tion of each agent is based on the world utility G(x)  map- 
ping the joint move of the agents, z f X, to the perfor- 
mance of the overall system. However in practice the agents 
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in a MAS are bounded rational. Moreover the equilibrium 
they reach will typically involve mixed strategies rather than 
pure strategies, i.e., they don’t settle on a single point x op- 
timizing G(z). This suggests formulating an approach that 
explicitly accounts for the bounded rational, mixed strategy 
character of the agents. 

Now in any game, bounded rational or otherwise, the 
agents are independent, with each agent i choosing its move 
xi at any instant by sampling its probability distribution 
(mixed strategy) at that instant, qi(zi). Accordingly, the 
distribution of the joint-moves is a product distribution, 
P(z )  = ni qi(zi). In this representation of aMAS, d l  cou- 
pling between the agents occurs indirectly; it is the separate 
distributions of the agents { q i }  that are statistically coupled, 
while the actual moves of the agents are independent 

PD theory adopts this perspective to show that the equi- 
librium of a MAS is the minimizer of a Lagrangian L(P), 
derived using information theory, that quantihs the ex- 
pected value of G for the joint distribution P(z).  From this 
perspective, the update rules used by the agents in RL-based 
systems for controlling MAS’S are just particular (ineff- 
cient) ways of Ending that minimizing distribution. PD the- 
ory suggests novel ways to End the equilibrium, e.g., ap- 
plying any of the powerful search techniques for continu- 
ous variables, like gradient descent, to End the P optimiz- 
ing L. By casting the problem this way in terms of fnd- 
ing an optimal P rather than Ending an optimal 2, we can 
exploit the power of search techniques for continuous vari- 
ables even when X is a discrete, Enite space. 

One disadvantage of using technique such as descent is 
the possibility to be trapped in a local minimum. To be abIe 
to escape from a local minimum, we explore in the paper the 
possibility to perform a change of semi-coordinate (semi is 
used since the transformation needs not be invertible). To 
start this study, we experiments local change between two 
agents and study how it can produce an improvement In 
the next section we review the game-theory motivation of 
PD theory. Then, we present the concept of semi-coordinate 
transformation and we present results to show that it can im- 



prove the result; signifcantly. 

2. Bounded Rational Game Theory 

In this section we motivate PD theory as the information- 
theoretic formulation of bounded rational game theory. 

2.1. Review of noncooperative game theory 

In noncooperative game theory one has a set of N ptay- 
em. Each player i has its own set of allowed pure strate- 
gies. A mixed str2tegy is a distribution qi (xi)  over player 
i’s possible pure strategies. Each player i also has a private 
utility function gi that maps the pure strategies adopted by 
all N of the players into the real numbers. So given mixed 
strategies of all the players, the expected utility of player i 
is E(gi) = J LIX n. q.(zj)gi(z) I. 

In a Nash equilibrium every player adopts the mixed 
strategy that maximizes its expected utility, given the mixed 
strategies of the other players. More formally, Vz,qi = 
argmax,! dx 4 1ljgi q,(sj) gi(z). Perhaps the major ob- 
jection that has been raised to the Nash equilibrium con- 
cept is its assumption of full rationality [4, 51. This is 
the assumption that every player i can both calculate what 
the strategies qj+i will be and then calculate its associated 
optimal distribution. In other words, it is the assumption 
that every player will calculate the entire joint distribution 
q(z) = n. q.(zj). If for no other reasons than computa- 
tional limitations of real humans, this assumption is essen- 
tially untenable. 
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2.2. Review of the maximum entropy principle 

Shannon was the Erst person to realize that based on any 
of several separate sets of very simple desiderata, there is a 
unique real-valued quantifcation of the amount of syntac- 
tic information in a distribution P(y) .  He showed that this 
amount of information is (the negative of) the Shannon en- 
tropy of that distribution, S(P)  = - s d y  P(y)Zn[$&]. 
So for example, the distribution with minimal infonnauon 
is the one that doesn’t distinguish at all between the various 
y, i.e., the uniform distribution. Conversely, the most infor- 
mative distribution is the one that specifes a single possi- 
ble y. Note that for a product distribution, entropy is addi- 
tive, i.e., S ( n i  qi(yi)) = xi S(qi).  

Say we given some incomplete prior knowledge about 
a distribution P(y) .  How should one estimate P (y )  based 
on that prior knowledge? Shannon’s result tells us how to 
do that in the most conservative way: have your estimate of 

1 Throughout this paper, the integral sign is implicitly interpreted as a p  
propriae, e.g., as L-ebesgue integrals, point-sums, etc. 

P(y)  contain the minimal amount of extra information be- 
yond that already contained in the prior knowledge about 
P(y) .  Intuitively, this can be viewed as a version of Oc- 
cam’s razor. This approach is called the maximum entropy 
(maxent) principle. It has proven useful in domains rang- 
ing from signal processing to supervised learning 161. 

2.3. Maxent Lagran,‘ oians 

Much of the work on equilibrium concepts in game the- 
ory adopts the perspective of an external observer of a game. 
We are told something concerning the game, e.g., its utility 
functions, information sets, etc., and from that wish to pre- 
dict what joint strategy will be followed by real-world play- 
ers of the game. Say that in addition to such information, 
we are told the expected utilities of the players. What is our 
best estimate of the distribution q that generated those ex- 
pected utility values? By the maxent principIe, it is the dis- 
tribution with maximal entropy, subject to those expectation 
values. 

To formalize this, for simplicity assume a Enite num- 
ber of players and of possible strategies for each player. 
To agree with the convention in other fields, from now on 
we implicitly nip the sign of each g, so that the associated 
player i wants to minimize that function rather than maxi- 
mize it, Intuitively, this nipped gi(z) is the “cost” to player 
i when the joint-strategy is z, though we will still use the 
term “utility”. 

Then for pGor knowledge that the expected utilities of 
the players are given by the set of values {ei}, the max- 
ent estimate of the associated q is given by the minimizer of 
the Lagrangian 

2 
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where the subscript on the expectation value indicates that 
it evaluated under distribution q, and the {pi} are “inverse 
temperatures” implicitly set by the constraints on the ex- 
pected utilities. 

Solving, we End that the mixed strategies minimizing the 
Lagrangian are related to each other via 

where the overall proportionality constant for each i is set 
by normalization, and G xi pigi ’. In Eq. 1 the probabil- 
ity of player i choosing pure strategy xi depends on the ef- 
fect of that choice on the utilities of the other players. This 

2 The subscript q(i)  on the expectation value indicates that it is evalu- 
ated accordins the distribution njfi  q j .  
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r-ts the fact that our prior knowledge concerns all the 
players equally. 

If we wish to focus only on the behavior of player i, it is 
appropriate to modify our prior knowledge. To see how to 
do this, fist consider the caSe of maximal prior knowledge, 
in which we know the actual joint-strategy of the players, 
and therefore all of their expected costs. For this case, triv- 
ially, the maxent principle says we should “estimate” q as 
that joint-strategy (it being the q with maximal entropy that 
is consistent with our prior knowledge). The same conclu- 
sion holds if our prior knowledge also includes the expected 
cost of player i. 

Modify this maximal set of prior knowledge by remov- 
ing from it specfiation of player i’s strategy. So our prior 
knowledge is the mixed strategies of all players other than 
i, together with player i’s expected cost. We can i n c o p  
rate prior knowledge of the other players’ mixed strategies 
directly, without introducing Laamnge parameters. The re- 
sultant maxent Lagrangian is 

L,(q1;> = P a k ,  - E(g,)] - S,(q,) 
- r h  77 
- &[Et .  - J l lq3 izJ jgz iz j j  -s;iqzj 
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solved by a set of coupled Boltzmann distributions: 

qz(z,) 0: e--B.Eq(*) (g++ (2) 

Following Nash, we can use Brouwer’s €xed point theorem 
to establish that for any non-negative values { ,B}, there must 
exist at least one product distribution given by the product 
of these Boltzmann distributions (one term in the product 
for each i). 

The frst term in L, is minimized by a perfectly ratio- 
nal player. The second term is minimized by a perfectly 
irrational player, i.e., by a perfectly uniform mixed strat- 
egy qz. SO in the maxent Lagrangian explicitly specifes 
the balance between the rational and irrational behavior of 
the player. In particular, for P + 00, by minimizing the La-  
grangians we recover the Nash equilibria of the game. More 
formally, in that limit the set of q that simultaneously min- 
imize the Lagrangians is the same as the set of delta func- 
tions about the Nash equilibria of the game. The same is 
true for Eq. 1. 
Eq. 1 is just a special case of Eq. 2, where all player’s 

share the same private utility, G. (Such games are known 
as team games.) This relationship reneCts the fact that for 
this case, the difference between the maxent Lagrangian and 
the one in Eq. 1 is independent of qt. Due to this relation- 
ship, our guarantee of the existence of a solution to the set 
of maxent Lagrangians implies the existence of a solution 
of the form Eq. 1. Typically players a will be closer to min- 
imizing their expected cost than maximizing it. For prior 
knowledge consistent with such a case, the ,& are all non- 
negative. 

For each player i defne 

fz(z,qz(z*)) = Pzgz(2) + In[qz(&)]. (3) 

Then we can maxent Lagrangian for player i is 

L ( q )  = J da: q(z)f,(z, qz(z1)). (4) 

Now in a bounded rational game every player sets its strat- 
egy to minimize its La,oragian, given the strategies of the 
other players. In light of Eq. 4, this means that we inter- 
pret each player in a bounded rational game as being per- 
fectly rational for a utility that incorporates its computa- 
tional cost To do so we simply need to expand the domain 
of “cost functions” to include probability values as well as 
joint moves. 
Often our prior knowledge will not consist of exact spec- 

ifkation of the expected costs of the players, even if that 
knowledge arises from watching the players make their 
moves. Such alternative kinds of prior knowledge are ad- 
dressed in [9, 101. Those references also demonstrate the 
extension of the fnrmu!it;nn t= S!c*;; m.;!’tp’le i i z i l i~  furlc- 
tions of the players, and even variable numbers of players. 

3. Optimizing the Lagrangian and Algorithm 

First we introduce the shorthand 

where the delta function forces xi = xi in the usual way. 
Now given any initial q, one may use gradient descent to 
search for the q optimizing L(q).  Taking the appropriate 
partial derivatives, the descent direction is given by 

where C is a constant set to preserve the norm of the prob- 
ability distribution after update, Le., set to ensure that 

Evaluating, we €nd that 

(Note that for Enite X, those integrals are just sums.) 
To follow this gradient, we need an effcient scheme for 

estimation of the conditional expected G for different 5;. 

Here we do this via Monte Carlo sampling, i.e., by repeat- 
edly IID sampling q and recording the resultant private util- 
ity values. After using those samples to form an estimate of 



the gradient forkach agent, we update the agents' distribu- 
tions accordingly. We then start another block of IID sam- 
pling to generate estimates of the next gradients. 

The algorithm is provided in the Algorithm 134. 

Algorithm 1 Gradient Descent on the Lagrangian 
while System has not converge do 

create L Monte Carlo samples 
{(Le. samples the probability distribution of each 
agents)} 
for each of the L samples do 

compute the world utility G 
compute the reward of each coordinate (Team 
Game, AU, WAU ...) 

end for 
for each of the N coordinates do 

compute the component of the gradient 
update the probability distribution 

end for 
end while 

3.1. Semi-Coordinates transformation 

Let assume we are a system designer of a MAS. How do 
we defne the joint-strategies of the agents? Let us present a 
trivial example. Let us consider two agents, R and C, which 
have two different actions, denoted 0 and I. The four differ- 
ent states are distinct with four different payoffs. In this con- 
text, what we call semi-coordinates are the different possi- 
ble joint-strategies we can de€ne: (C, R) H state. The 
choice of the mapping, as we shall see, may play an impor- 
tant role. 

Formally, this is expressed via the standard rule for trans- 
forming probabilities, 

P(z )  = h:P(z)b(z  - Cb)), J 
where C(- )  is the mapping from z to z. To see what this 
d e  means geometrically, let P be the space of all distri- 
butions (product or otherwise) over z's. Let Q be the space 
of all product distributions over z. Let C( e) be its image 
in P. Then by changing C(.), we change that image; differ- 
ent choices of ((.) wiIl result in different manifolds {(Q). 

In @re 1, we present two different semi-coordinates: 
z consists of the possible joint strategies, labelled 
(1,1),(1,2), (2 , l )  and (2,2). Have the space of pos- 
sible 2 equal the space of possible z, and choose 
~- ~ 

3 The stopping criteria is for now only based on the change of the prob- 
ability distribution: if the change in probability falls under a €xed 
threshold, we stop the algorithm. 
the step size is not held €xed. We perform a iine search on the step 
s i x  to ensure that L decreases, if it does not, we reduce the step size. 
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C ( l , l )  = (Ll), C(1,2) = (2,2), CR1) = (291)Y 
and ((2,2) = (1,2). Say that q is given by 
ql(zl = 1) = q2(s2 = 1) = 2/3. Then the distribu- 
tion over joint-strategies z is P(z  = (I, 1)) = P(z = 
(1,l)) = 4/9, P(z = (2 , l ) )  = P(z = (2,2)) = 2/9, 
P(z  = (1 ,2) )  = 1/9. So P ( z )  # P ( z ~ ) P ( z z ) ;  the strate- 
gies of the players are statistically coupled. 

Figure 1. Two different semi-coordinates in a 
2 by 2 game 

There are different goals associated with the idea of 
s e ~ ~ - c ~ r d i r ? z t ~  tranrfomation. One is to allow us to €nd 
a good coordinate system to start with or to be re-used in 
later searches. A search of a good Coordinate system would 
then be seen as a prepocessing stage before solving a prob- 
lem. Another is that, in the context of a descent, the system 
is likely to fall into a local minimum Changing coordinates 
might allow to escape from i t  Assume the system reached 
a local minimum, and let us assume we perform a coordi- 
nate transformation: in the new coordinate system, the land- 
scape of the function will change shape, but the system is 
still at the same position. We hope that th is  change will cre- 
ate a new direction to keep on descending. I3 y iterating the 
process, we believe that we should reach the global mini- 
mum. 

3.2. Example 

Let assume for now that we only have two different pay- 
offs, a high value (H) and a low value &). The ultimate goal 
of the agent is to maximize the payoff. We present in Fig- 
ure 2 two different game matrices corresponding to two dif- 
ferent coordinate systems for the same problem. 

Matrix 1 Matrix 2 

actions 0 1 

Figure 2. two different coordinate systems 
yielding to two different games 



Using Matrix. 1, a reinforcement learning algorithm will 
converge to a €xed strategy to get H. But if we change co- 
ordinate and consider Matrix 2, the problem become easier 
to solve because the effort of the coordination is less. More- 
over, it is possible to improve the entropy term, if the agents 
try to maximize the sum of the payoff and the entropy, R 
converges to play action 1 and C converges to a mixed strat- 
egy f 7  i. Increasing the entropy may enable us to be more 
nexible. 

3.3. Extension from a two players game 

Assume now that we have N coordinates with binary ac- 
tions. Recall we need to form the mapping, i.e. how do we 
set the joint actions of the agents. Searching over all pos- 
sible transformations is not feasible (2N!  possibilities). We 
hzve not developed any theory to End a good coordinate sys- 
tem. 

In this paper, we explore some preliminary techniques 
to make changes between two coordinates during the gradi- 
ent descent proposed in Algorithm 1. We are going to try to 
make things better between two coordinates, hoping that it 
will not turns things worse with the other coordinates. This 
can be seen as two agents trying to collaborate by exchang- 
ing information in order to improve the system. 

Such coupling of the players’ strategies can be viewed 
as a manifestation of sets of potential binding contracts. To 
illustrate this return to our two player example from Fig- 
ure 1. Each possible value of a component zi determines a 
pair of possible joint strategies. For example, setting z1 = 1 
means the possible joint strategies are ( 1 , l )  and (2,2). Ac- 
cordingly such a value of xi can be viewed as a set of pre- 
ferred binding contracts. The value of the other components 
of x determines which contract is accepted; it is the inter- 
section of the preferred contracts offered by all the compo- 
nents of z that determines what single contract is selected. 
Continuing with our example, given that z1 = 1, whether 
the joint-strategy is (I, 1 )  or (2,2) (the two options offered 
by zl) is determined by the value of z2. 

Binding contracts are a central component of coopera- 
tive game theory. In this sense, semi-coordinate transfor- 
mations can be viewed as a way to convert noncooperative 
game theory into a form of cooperative game theory. 

While the distribution over z uniquely sets the distribu- 
tion over z, the reverse is not true. However so long as our 
Lagrangian directly concerns the distribution over z rather 
than the distribution over z, by minimizing that Lagrangian 
we set a distribution over z. In this way we can minimize 
a Lagrangian involving product distributions, even though 
the the associated distribution in the ultimate space of inter- 
est is not a product distribution. 

In practice, when we change to change the coordinate 
system, we frst choose (randomly) two coordinates. Then, 

we decide on the deEnition of the joint move space of these 
two agents. In other words, if each agents have p actions, 
we need to allocate the p 2  ddnition of the joint actions. For 
example, in the case where the actions are binary, the four 
joint actions labelled a, b, c and d. A s h u f i  is presented in 
the Figure 3. Each agent is keeping its probability distribu- 
tion over its action space, hence the probabilities that each 
joint actions occur has changed. In the example, the prob- 
ability of the joint action b does not change, whereas the 
probability of joint action a, which was p ~ ( 0 )  * p c ( 0 )  is 

PR(1)  * PC(1) .  

new coordinate system previous coordinate system 

Figure 3. Example of the defnition of the joint 
action space of the two agents taking part in 
the transformation. 

We now present the different way we considered to 
choose the transformation. 

local gradient descent We assume in this part that the size 
of the action space is not too large. For each different 
defnition of the joint move, we can perform a ’local’ 
gradient descent where we update only the probability 
of the two agents concerned in the transformation. The 
defnition chosen will be the one with the best value of 
the world utility. We will experiment the possibility to 
re-use or not the new probabilities of the agents. Since 
only two agents are concerned, this should be very fast, 
but we need to perform a ,adient descent for all pos- 
sibles definition, which is possible only if the action 
space is small. 

Based on the value of the expected G From the Monte 
Carlo simulation, we can compute an estimate of 
the expected World Utility for the different joint ac- 
tions. We can get the the probability distribution 
of the two agents. This probability distribution re- 
maining Exed during the transformation, one can 
compute the best allocation of the joint moves to opti- 
mize the value of expected world utility G. This will 
ensure that we reach a better value of the world util- 
ity, also, this can be done very fast. 

For example, in Figure 4, in the original coordi- 
nate system, the number in the matrix are the expected 



value of the World utility for each joint move. The ex- 
pected world utility is 2.02. If we re-assign the action 
space, the expected world utility can be improved to 
2.26. 

-8 

-9 

0.6 0.4 

E(G) =2.02 

Lagrangian without shuffle - 
Lagrangian with shuffle with update ------- - 
Lagrangian with shuffle with restart ...-..-- 

- 
- 

Figure 4. 

0.6 0.4 

E(G) =2.26 

We present in Algorithm 2 the algorithm we will use in 
the experiments. Note that we will perform a shuPre each 
time the system is next to convergence, i.e. when the system 
reaches a local minimum. We also ran experiments where 
we pe.rfcm %?nrf~x'ztisn ~ C i k d i c d I y .  

Aigorithm 2 Gradient Descent with s h u e  
while System has not converge do 

create L Monte Carlo samples 
for each of the L samples do 

compute the world utility G 
compute the reward of each coordinate (Team 
Game, AU ...) 

end for 
for each of the N coordinates do 

compute the component of the gradient 
update the probability distribution 

end for 
if change in the probabiIity _< threshold then 

choose a pair of agents 
choose a s h u a  
perform the coordinate transformation 

end if 
end while 

4. Experimental Results 

We made some experiments in a simple coordination 
game where the agents are in a ring, and they must pick 
an action which must be opposite to their neighbors. The 
agent are playing in a team game. They do not get to h o w  
what is the world utility function and they do not get to ob- 
serve the actions of the other players. The agents that are al- 
lowed to change their coordinate are necessarily neighbors. 

All the curve prese.nted are averaged over several runs. In 
Figure 5, we present results where we used a local gradient 
descent, and we tried out the re-use the new probabilities or 
not. The ring is composed by 20 agents, and the temperature 
is moderate (which means that the agents are not fully ra- 
tional). The performance compared to a simple gradient de- 
scent is important. In Figure 6,  we present results where the 
agents are using either a random s h u e ,  or a shufne based 
on the expected G. For these experiments, the transfoma- 
tion occurred every 10 runs until iteration 100. In his case 
the number of agents is 50. Surprisingly, the random shuf- 
ne has some bendt over not doing any transformation. It 
seems that the system has changed suf€ciently so that the 
system can reach a better minimum. 

Descent m the Lagrangian 
system with 16 agents 

beta= 0 2  

m - m -11 
m 4 -12 
J 

-73 

-14 

-15 

-16 ' I I I 1 
0 50 100 1 5 0  2W 250 300 350 400 

number of iterations 

Figure 5. 

Csmparison of shuffle strategy in Gradlenf Descent 
Temperature = 0.5 

number of agents = 10 

noshutfle - 
random shuffle ------- 

shuffle based on G .--.-.-. - 
-44 

4 7  

-48 

-49 
0 50 1 0 0  150  200 250 

number of iterations 

Figure 6. 
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We are currently investigating other criteria to decide on 
the shu& to perfom. In particular, we are trying to un- 
derstand whether the ,adient information can be used. In- 
tuitively, if the system get stuck in a local minimum, we 
need to look for transformation that provides a new possi- 
bility to go downhill. Hence, we are investigating transfor- 
mations that yield some improvement for the expected La- 
grangian and have a potentially important gradient. 

Also, we are investigating ways to apply transformation 
on a larger set of agents. In the current implementation, we 
are making only one coordinate transformation between two 
agents. In large systems, it might be diffcuit to see the im- 
provement made by such a local changes. We are investi- 
gating ways to make multiple local change in one iteration. 
Another question is about when does a shufte need to be 
performed. 

6. conclusion 

Product Distribution (PD) theory is a recently introduced 
broad framework for analyzing, controlling, and optimizing 
distributed systems [8,9, 101. Here we investigate PD the- 
ory’s use for adaptive, distributed control of a MAS. Typi- 
cally such control is done by having each agent run its own 
reinforcement learning algorithm [3, 12, 13, 111. 

In this approach the utility function of each agent is 
based on the world utility G(z) mapping the joint move of 
the agents, z E X, to the performance of the overall system. 
However in practice the agents in a MAS are bounded ratio- 
nal. Moreover the equilibrium they reach will typically in- 
volve mixed strategies rather than pure strategies, i.e., they 
don’t settle on a single point z optimizing G(z). This sug- 
gests formulating an approach that explicitly accounts for 
the bounded rational, mixed strategy character of the agents. 

PD theory directly addresses these issues by casting the 
control problem as one of minimizing a Lagrangian of the 
joint probability distribution of the agents. This allows the 
equilibrium to be found using gradient descent techniques. 
In PD theory, such gradient descent can be done in a dis- 
tributed manner. 

We present experiments where we perform semi- 
coordinate transformation, that is changing the ddnition 
of the joint strategies of the agent during the ,pdient de- 
scent. The experimental results shows that these transfor- 
mations are helpful to improve the speed of convergence 
and improve the quality of the equilibrium found by escap- 
ing local minima. It is interesting to notice that, by making 
several local changes in the system, we can affect the per- 
formance of the overall system. These preliminary results 
are encouraging. 
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